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MODEL OF HEAT AND MASS TRANSFER IN THE DRYING PROCESS WITH THE 

REMOVAL OF MULTICOMPONENT LIQUID SYSTEMS 

V. V. Migunov and R. A. Sadykov UDC 66.047 

A mathematical model of heat and mass transfer is proposed on the basis of the as- 
sumption of thermodynamic equilibrium between the liquid and the~vapor removed in 
the course of drying. 

It is often necessary to calculate the drying of a material containing a multicomponent 
liquid system (MLS), taking account of the change in moisture content of the material for each 
component, in performing many {echnological processes. This is a consequence, on the one 
hand, of stiffening of the requirements on the dried products -- the final specific mass con- 
tents of each component are specified -- and, on the other, of a tendency to optimize drying 
processes, which requires detailed study of the kinetics of MLS removal from the products. 

In [i], under the assumption of thermodynamic equilibrium of the liquid and the vapor 
removed, the surface mass transfer in convective drying of bodies including MLS was inves- 
tigated. In [2], it was shown that the values of the transfer coefficients for the MLS dif- 
fer from their values for the individual liquids, which confirms the urgency of research into 
the drying process. In [3], a model of the drying process with removal of a binary ideal 
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liquid mixture at constant pressure (or constant temperature) in the first period is proposed, 
on the basis of equilibrium between the liquid and the vapor over the whole volume of the ma- 
terial. 

The present work generalizes the idea of [3] to the case of a real liquid mixture of n 
components with variable pressure and temperature. 

Material Balance 

In a medium from which MLS is removed, a sufficiently small material volume is isolated, 
and the parameter Ui, U = ZU., x. y., i = i, n, are introduced. It is assumed that U. changes 

i' I 1 
only as a result of evaporatlon, and the vapor content in the material is negligibly small in 
comparison with the liquid content. It is also assumed that the MLS composition is nonazeo- 
tropic (there is a component for which Yco # Xco)" Then from the material balance of distil- 
lation (for example, [4]), it follows that 

�9 dU 

dx~ = (gi -- xi)  --U---, i ~- ~, ~. (1) 

The system in Eq. (i) includes exactly n -- i independent equations. 

It is assumed that mainly free moisture is removed, and that diffusion of the liquid from 
the particle has no significant influence on the process (first period of drying); the state 
of the removed volume is characterized by temperature T and pressure P. Within the framework 
of the assumptions introduced, the composition of the vapor phase removed may be regarded as 

equilibrium. 

The pressure is specified as a function of the temperature T 

P : :  P (T) (2 )  

(in drying calculations, it is often assumed that P = const over the whole of the material; 
it is expedient to take some account of the change in P on account of vapor filtration, using 

theoretical or experimental data). 

The values of the parameters U, T, P, x, y -- altogether, 2n + 3 unknowns - are of inter- 
est here. Suppose that the vapor phase consists only of the MLS components, and that the 
liquid phase is unique; then, accordin_g t_o the Gibbs phase rule, n + 2 relations may be im- 
posed on the 2n + 2 parameters T, P, x, y, so that only n of them are free. If the initial 
conditions for Eq. (i) are formulated, then a further n -- 1 relations result. Finally, tak- 
ing account of Eq. (2), altogether 2n + 2 independent relations are obtained Hence, the 
whole set of 2n + 3 parameters is determined by a single independent variable. It would be 
natural to take the time as this variable, but then it would be necessary to consider the 
amount of heat supplied, which falls outside the scope of the material balance. It is as- 
sumed that the temperature T increases monotonically with time; then it may be chosen as the 
independent variable (this is expedient_ for writing the thermal balance). To find the ex- 
plicit form of the dependences x(T), y(T), and U(T), a system consisting of the equations of 
all the above-noted relations must be written. In the mathematical formulation of the prob- 
lem, Dalton's law must be written in the form 

,j~P~ - v ~ x p ,  .~ , i : L n .  

Then the equilibrium pressure 

(3) 

P e  = ~ Yixi Po' (4) 

- -  

y~ = ?ixl----p-~e , i =  1, n. 

and 

(5) 

(i), it is Differentiating the equation Pe(X, T) = P(T) with respect to T and using Eq. 

found that 
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dP "OPe 

I ( T )  - -  1 , dU,, = d T  a T  (6) 
. a& ' 

U dT ~ ( ! h - - X i )  Oxi 
i= I 

where I(T) determines the relation between the moisture content and the temperature. To cal- 
culate the partial derivatives in Eq. (6), specific form must be given to the dependences 
Yi(x, T). If the Wilson equation is used [4], then 

n 

1 exp (1 _ (7) 

where 

n 

~y : z.~ &Ajz, 
l = 1  

(8) 

while Aij(T) is determined by the binary interactions of the components (note that, in the 
Wilson equation, x i is the mole fraction of the component i). Now, taking account of Eqs. (4) 
and (5), the expression for I(T) takes the form 

P'- ~x,w p2"+p~ .,~,5 4,  d ~' *'A:.~] 

i = 1  , e / L i = t  l - -  

Here and below, a prime denotes differentiation with respect toT. 

Thus, a closed system of equations is obtained 

U' = Ul, xi ~ (y, -- xi) [, i = ~, n, 
(lO) 

where the right-hand side is calculated from Eqs. (2), (4), (5), (7), and (9). Together with 
the initial conditions for the~oisture content 

Ui(.T~,)=:U~o, i = :  1, n, (Ii) 

this system serves to determine x(T), y(T), and U(T). It may be solved using methods of in- 
tegrating systems of first-order ordinary differential equations. 

Thermal Balance 

To find U(T) and x(~) in the material volume, as shown, it is sufficient to know T(T). 
However, ultimately, what is of interest is the distribution of U, x, and T over the whole 
material -- mean values are insufficient. Therefore, the given material balance is used only 
for small volumes in deriving the heat-conduction equation. 

It is assumed that the heat is transmitted in the material only by heat conduction -- 
heat transfer with vapor may also be taken into account by the thermal conductivity %(T) -- and 
only in the positive direction of the Ox axis (one-dimensional problem). Suppose that the 
material is motionless (there is no settling in the drying process) and the material volume 
coincides with the coordinate volume. Writing the heat-balance equation for the coordinate 
parallelepiped, and passing to the limit as Ax + 0, AT § O, the ordinary heat-conduction equa- 
tion is obtained 

Ox ~x. = p c -]- U (T) x, (T) ci (T) --U'  (T) ~.~ yi (T) ri (T) OT 
~ 1  i=l  ' r  

(12) 

The Kirchhoff substitution reduces Eq. (12) to the form 
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~ T  = ~(T)  OT 
Ox - ' - ~  -~-x' (13) 

where 

[ n o ] 
g: (T) = - p _ c + U (T) Z xt (T) ci (T) - -  U' (T) ~ Yi (T) r, (r)  . 

~. (T) ~=~ ~=, 

(14) 

Thus, the heat-propagation process in the material being dried is described by Eq. (13) 
with a coefficient of the special form in Eq. (14). The quantity in square brackets may be 
understood to be the specific heat in a generalized sense. Calculations of ~(T) for a ser- 
ies of ideal binary liquid systems [5] show that, in the temperature range presently of in- 
terest, 99 changes very strongly but monotonically. Low efficiency of numerical methods of 
solving boundary problems for Eq. (13) would be expected, because, as shown in [6], the dif- 
ferential properties of the coefficients play a determining role in the numerical solution 
of any problem. 

In the case of the first boundary problem 

02T OT T (x, O) = T o, 0 ~ x < oo, 
Ox 2 q.(T) 0z T(0, "0=Tc ,  0 < T < o o ,  (15) 

with a monotonically nonincreasing coefficient qg(T) > 0, a method giving the solution in the 
form of a smooth function with an error specified in advance is proposed below. Note that 
the problem in Eq. (15) is posed, for example, in calculating brief contact of the material 
with a heating wall. 

The Boltzmann substitution transforms Eq. (15) to the equivalent two-point boundary 
problem for an ordinary differential equation 

x 
T" ~ 2~r  T(O) To, T ( o o ) =  To, 0 < ~ =  --< oo, (16) 

= 2 1 / ; -  

w h e r e  the prime in this case denotes differentiation with respect to ~; the method of reduc- 
tion to a Cauchy problem leads to a series of problems of the form 

T " - i - 2 ~ c g ( T ) T ' = O ,  T ( 0 ) = T  e, T ' (0 ) : : z ,  0 < [ <  oo. (17) 

Integration of Eq. (17) is taken in stages, in each of which an approximate solution of the 
Cauchy problem is constructed 

(18) 
T" q- 2 ~  (T) T' =: 0, T (~i) = T~. T' (~i) -= TI, ~i < ~ < ~i+x, 

in the form 
T' ( z ,  ~)=T~Ei(~, ~m), T(z ,  ~) 7"~+ Tij E~(t,~m)dt, (19) 

where Er ~o m) = e x p [ ( ~ .  -- ~2) ~Om] ; qo m = 1/2@mr n + q0max) ; ~Omi n = ~o(Ti) ; q0ma x = qo[T i + 
T[ (gi+~ -- $i  ) ] "  The s t e p  (~i+~ -- ~r i s  cnosen s as to  s a t i s f y  t h e  c o n d i t i o n  

tTII ~f+l (~i+l - -  ~i)2((~ma/--  f~II/iD)+ ( ~  - -  ~i+l) * i  (~i+l) ~ ( 2 0 )  r ~ - -  " 

E i ( t ,  q)min) - -  E i  (t, a when l z  < O;z . -  . 0  - + 

where *i(t)=: i ( ~  ) 
l Ei(~ q)max) whent2~ cc~, 

6 is specified, and ~k is the solution of the inequality 

Izl ]/I/ ~ "erfc[~hl/q0(Tcil~ 2 
l/ r (Tc) " 3 

]I1 q?max-- ]rl %nin 

% n  a~: - -  q )m i n 

6. (21) 

�9 ' = T'(z Ei+1 ), ~i+2 are chosen, In the next step, it is assumed that Ti+ I = T(z, ~i+x) Ti+ x 
and so on. The process begins with Go = 0 and continues until ~N is such that 
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]/~1 T'N -+ zEo (~,  q"o) I EO (~A,' --qN,) 
�9 2 v %  

erfc (~m V q~o) ~ 1 -- 3~----~ 

where 

Thi s  ~ i s  f ound ,  and does  no t  exceed  ~ . For  a l l  ~ > ~N' T (z ,  ~) i s  c o n s t r u c t e d  f rom gq.  N k 
(19) w i t h  i = N a n d  ~m = ~0- S e l e c t i n g  g, z~,  and z2 such t h a t  

sup] r (z=, ~) -- T (z 1, ~)l ~ e -- 6, (23) 

T{zl, o o ) < T o - - 6 < T o < T o + 6 < T ( z  2, oo) (24) 

where  T (z_ ,  ~ ) ,  m = 1, 2,  i s  u n d e r s t o o d  t o  d e n o t e  t h e  a s y m p t o t e  o f  t h e  s o l u t i o n ,  any  o f  t h e  
f u n c t i o n s m T ( z ~ ,  g) o r  T ( z 2 ,  ~) may be  t a k e n  as t he  s o l u t i o n  o f  Eq. (16) ;  t h e  e r r o r  i s  no h i g h -  
e r  t h a n  E. 

The essence of the above method is the actual replacement of ~(T) by piecewise-constant 
functions. Estimates of the error of the method follow from the mathematical basis, which 
entails significant use of analytical solutions of Cauchy problems in Eq. (18) with the con- 
stant coefficient ~. 

For comparison with the method proposed, the test problem is solved using: the difference 
method for Eq. (15), the iterative method, for Eq. (16), and the Runge-Kutta method and the 
predictor-corrector method of fourth-order accuracy for Eq. (17). In all cases, one of the 
principal properties of the solution was disrupted: its monotonicity; the methods for Eq. (17) 
are unstable at large g, and the methods for Eqs. (15) and (16) require much machine time and 
converge slowly. The method proposed here automatically satisfies many physicalconditions 
(T' ~ O, T" m O, asymptotic behavior), gives guarenteed accuracy, and requires much less time 
than the difference method in machine realization. 

Comparison with Experimental Data 

The basic assumption of equilibrium composition of the vapor has been tested for a series 
of experiments on removal of the MLS acetone-methanol-water from oxyethylcellulose in vacuum- 
rake drying apparatus [5]. The initial data for the tests were the pressure in the apparatus 
(maintained constant in the course of each experiment) and the values of U~(Tk),~ i = i, 3, k = 
O, N. 

3 E 
These  d a t a  a r e  used  t o  d e t e r m i n e  Uh = ~ U i ( z h ) ,  k ~  O, N; x~(~j~)== Uk , i =  1,3 k =  O, N 

i = 1  

and t h e n  Eq. (1) i s  i n t e g r a t e d  by t h e  b r o k e n - c u r v e  method a c c o r d i n g  t o  t h e  f o r m u l a s  

where x~(To) = x~(zo), i = i, 3, and y~(x~), i = i 3, is the equilibrium composition of the 
i i c • ~ ' 

volume, and U~(~ k) = xi(~k)Uk are calculated. 

A typical picture of the agreement between the calculation and experiment for the whole 
series of experiments is shown in Fig. i. In the initial period, the agreement is very good; 
then (beginning at �9 = 50 min), marked discrepancy between calculation and experiment is ob- 
served. This difference is explained in that, in the final period, little acetone remains -- 
e 0 Ut(5 ) ~ 0.03 -- and its rate of diffusion from the particle plays a determining role; the 

vapor becomes nonequilibrium. In the initial (first) period of drying, for which the mathe- 
matical model is constructed, the assumption of equilibrium composition of the vapor removed 
is satisfied. 

The corresponding equilibrium temperature, calculated simultaneously with y~(T,.), is 
an increasing function of the time, which confirms the possibility of choosing t~ismquantity 
as the independent variable in the materialbalance. 
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Fig. i. Comparison of theoretical (continuous curves) and exper- 
imental (points) values of the concentration (a) and specific mass 
content (b): i) acetone; 2) methanol; 3) water; time, min. 

NOTATION 

n, number of components in MLS (multicomponent liquid system): U, specific mass content 
in dry mass of material; T, temperature; P, pressure; I(T), logarithmic derivative of the spe- 
cific mass content with respect to the temperature; k(T), thermal conductivity; p, c, bulk 
density and specific heat of the dry material; ci(T) , ri(T) , specific heat and of vaporiza- 
tion of component i; x, y, n-dimensional concentration vectors in the liquid and vapor phases, 

�9 ~ pO 
respectively; x., y., components of the vectors x, y; Pe, equillbrlum pressure; , satura- 
tion pressure; ~, a~tivity coefficients; Aij(T) , coefficient in Wilson equation; x, r, space 
and time variables; Ax, AT, increments in x and T; $, variable in Boltzmann substitution; 
z, initial condition when $ = O; g, positive constant. Subscripts: i, j, k, l, m, N, num- 
bers; superscripts: E, c, experiment, calculation. 
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